The RPG Series

RPGs are one of gaming’s most popular and longest-lived genres, and some of
the most popular series in the world have had entries (or even got their start) on
the GameBoy. And now, thanks to GB Studio, it’s your turn to create an RPG of
your own!

In this series, we will cover how to use GB Studio’s built-in events to create a
basic RPG system that you can expand on for your own game. All project files
will be available to download at the end of the article, and inside you’ll have all
the examples and assets we use in each article (along with some additional
comments). You can use these as a reference or even expand on them to create
your own game.

Quest 2: Rewards & Leveling Up

Adding a Game Over Screen

To differentiate our battle results, instead of sending our player directly back to
the Boot Screen, let's send our player to a Game Over screen instead. This will
also begin to prepare our game for when we have more options (such as loading
a saved game or quitting back to a main menu).

First, we'll add a new scene called “Game Over.”

Battle Scene
Game Over

CHMHME OQWER

A: 2/20 S:23/96 T:6/30

Back in our Battle Scene, we'll update our Monster Turn sequence to now send
us to this scene when we are defeated, and we can spice up the sequence a bit
by adding some music and a simple screen fade.

In GB Studio 4, dialogue events were improved to add more advanced features
to control how your text displays. For our “You Died...” message, we’ll set this to
text box to close “Never (Non Modal)” - this will keep the text displayed while our



script continues to run, allowing us to time the music with a wait event and not
need to wait for the player to press A. As our game over music plays, the screen
will fade out, and take us to our new scene.

v If ($HeroCurrentHP <= 0)

Condition
$ $Hero Current HP

¥ Play Music Track

Song

» bs-free-gameover

¥ Display "You died..."

Behavior
Text Open Speed Text Close Speed
Default Default
Close When...

Never (Non-Modal)

» Wait For 2 Seconds
» Stop Music
» Close Non-Modal Dialogue

» Change Scene To GameOver At {0,0}

We’'ll need to use the new [Close Non-Modal Dialogue] event before we
change our scene to make sure the text box we kept open doesn’t reappear on
our next scene, too.

For now, we’ll keep our Game Over scene very simple. We'll give the player a
choice to continue using the [Display Multiple Choice] event, but for now we’ll
have both answers return to the Boot Scene. We'll come back to this later on in
the series!



On Init

» Hide Player
» Fade Screen In (Automatic)
» Wait For 2 Seconds

» Display Choice: Set $MenuChoice With Options "Try Again?","Quit"

v If $MenuChoice

Condition

$ $Menu Choice

» Change Scene To BootScene At {0,0}

< Add Event

¥ Else

» Change Scene To BootScene At {0,0}

< Add Event

Now that we’'ve added that, don’t forget to update any other scripts that check for
the player’s defeat (such as in our Poison damage script!).

Creating Our Victory Sequence
Next, we’ll update what happens when we defeat the monster. Right now, we
only need to update the sequence in our “Fight” trigger.

Currently, once the enemy has reached 0 HP, we just send the player back to
Boot Scene - kind of anti-climactic, isn’'t it? Just like our Game Over sequence,
let’s spice that up by adding some music. We'll also want to use [Hide Actor] on
our enemy sprite, since we’re no longer going to immediately leave the scene.



v If ($MonsterCurrentHP <= 0)

Condition

$ $Monster Current HP

» Hide TurnipEnemy
¥ Play Music Track
Song
» bs-free-victory-loop
» Display "You defeated the monster!"
: v Player Set Position To {18,3}

Actor

L2 Player

Instead of sending the player to a new screen for our Victory sequence, let’s add
a new trigger (named “Victory!”) to handle this script as part of our trigger based
menu and send the player there.

Battle Scene Victory!

On Enter

< Add Event

A:2/20 S:23/96 T:7/30

Rewarding Victory

With our victory trigger created, it's time to hand out some rewards! In most
RPGs, defeating monsters will reward gold, items, and experience points (XP).
We'll set up our battle system to reward all three, but you can tailor the types of
rewards to different types of battles if you'd like.

Gold

Let’s start with giving the player some Gold for defeating our monster. First,
create an [Event Group] to keep your script organized. In order to make sure
our player doesn’t earn more gold than they can carry, we'll first check if they



already have max gold. For this, we’ll assume we’re limiting the player to 9,999
gold, but you could also use a variable here if you wanted to allow the max gold
to change over time (but remember, a variable can only go as high as 32,767).

If our player doesn’t already have 9,999 gold, we’ll use a [Math Function] to
reward a random amount of Gold. Let’s set one of our trigger’s local variables
(renamed to $Gold Rewarded in our examples) to this amount. Then, we’'ll need
to use a [Math Expression] to actually update our player’s Gold.

Create a global variable (in our project, this was variable 13) named “Gold.” With
our Math expression, we’ll see if the amount rewarded to make sure our gold
doesn’t go above 999 using the “ min( “ function. This will reward the lower of the
two options - either our “Gold + Gold Rewarded”, or 9,999. Add a few dialogue
events to tell the player their reward (or lack of reward), and we’re all set!

¥ Gold

v If ($Gold < 9999)

Condition

v < # 9999

» $GoldRewarded = Random(3,5)
¥ Display "You found $GoldRewarded gold!"

Text

You found $Gold Rewarded gold!

Add Avatar

> $Gold = min($Gold+$GoldRewarded, 9999)

< Add Event

¥ Else

¥ Display "You found some gold, but you can't carry any more!"

Text

You found some
gold, but you can't

carry any morel

Add Avatar

Items

Managing an inventory can be complicated, and there are many different ways
you can create an item and inventory system. For our game, we will be giving
our player 10 inventory slots to hold items, and each will take up a whole slot in
our bag.



First, create 10 global variables, named Item 1, Item 2, and so forth. These are
what we'll use to see if our player can hold an item. We'll also need to determine
what our variables represent. For example, while ltem 1 = 0, we know this
inventory slot is “empty,” but once it has a value it will represent a different item.

As we introduce more items and shops into our game, we can determine what
these values represent. For now, we’ll assume that a value of “1” is equal to a
“Potion.”

In our Item event group, we’'ll first want to check if we have an open inventory
slot to give the player an item. To do this, we’ll need to stack a series of [If
Variable False] events, checking if our Item variables are empty.

If ltem 1 is false (“0”), we can reward the player with the item and store it in that
variable, but if ltem 1 was true (any non-zero value), we’d use the “Else” function
of our event to check our next variable.

v If I($item1)

Condition

! $ Sltem1

> $item1 = $ltemRewarded

<= Add Event

¥ Else

v If I($Item2)

Condition

! $  Sltem 2

> $item2 = SitemRewarded

¥ Else

> If I($item3)

We'll repeat this for all 10 Item variables. If all our Iltem variables are true, in our
final “Else,” we can add a dialogue box that tells the player they didn’t receive an
item because their bags are full.

To actually set the variable, we’ll use a [Set Variable to Value] event at the start
of our script. By setting a local variable (renamed Item Rewarded in our
example) to a value, we know that his monster will reward that specific item
(remember, a “1” = a potion), and by using a local variable, this makes it easier
for us to change this in the future - if we copied this event for another monster,



we could change the items that that monster gives out, or we could update this
in the future to give a random item.

v $itemRewarded = 1

Variable

$Item Rewarded

v If I($item1)

Condition

! $ Sitem 1

v $item1 = $ltemRewarded

Variable Value

$ltem 1 $  $ltem Rewarded

In each of our Item checks, we can then use another [Set Variable to Value]
event to set the Item global variable to the Item Rewarded; this just simplifies the
repetition - we don’t need to go and change every event to a new value if we
wanted to change what item is rewarded; instead we’d just need to change the
first event.

XP

Finally, let's give the player some Experience Points (XP). Like most RPGs,
defeating monsters in our game will reward XP, and after a certain amount of XP
is gained, our player will increase their level and grow stronger.

First, we’ll create three more global variables: Hero XP, Hero Level, and Monster
Level. For our game, we’ll use a very simple formula to determine how much XP
a monster is worth to our player: if a monster is at a higher level than the player,

we’ll give out double XP, but if our player is at a higher level than a monster, we’ll
give out half the XP.

In our Battle Scene On Init script, we'll add a new event in our “Set Monster
Stats” event group to set our Monster’s level to 2.



The varii'bllé to use.

$MonsterMaxHP = 12
$MonsterCurrentHP = $MonsterMaxHP
$MonsterATK = 4
$MonsterDEF = 3
$MonsterSpeed = 2
$MonsterStatus = 0

¥ $MonsterLevel = 2

Variable

$Monster Leve

In our Boot scene, we'll also want to set our player’s Level to 1 and their XP to 0!

¥ Set Hero Starting Variables Vi

» // Our stat variables should all be GLOBAL; this way we can reference them inot... v

:» $HeroMaxHP = 15 "

" » // We'll set our Current HP to our Max HP at the start so that we start out health... ¥
$HeroCurrentHP = $HeroMaxHP
$HeroATK = 5

$HeroDEF = 3

$HeroSpeed =4

$HeroStatus = 0
$HeroXP =0

$HerolLevel = 1

Back in our Victory trigger, we’ll add our XP formula. First, we’ll determine how
much XP our Turnip is worth - let's go with 10 XP to start. Using a [Set Variable
to Value] event, we'll set a local variable (renamed XP Rewarded) to 10.

To set up our formula, we’ll use [Compare variable to variable] events. First,
we’ll check if the monster is higher level than our player, and reward double the
XP Rewarded variable if that’s true. In the Else, if the Monster Level is lower
than the Hero Level, we’ll use another Math Expression to half the XP Rewarded
variable. And if the Hero Level and Monster Level are the same, nothing will
change.



v If ($MonsterLevel > $HeroLevel)

Condition

$ $Monster Level $Hero Level

v $XPRewarded = $XPRewarded*2

Variable Expression

$XP Rewarded WV $XP Rewarded*2

<= Add Event

¥ Else

: v If ($MonsterLevel < $HeroLevel)

Condition
$° $Monster Level $ $Hero Level
v $XPRewarded = $XPRewarded/2
Variable
$XP Rewarded
Expression

$XP Rewarded/2

After that, add your XP Rewarded to your Hero XP using a Math Expression.

v $HeroXP = min($HeroXP+$XPRewarded,12375)

VE(E Expression

$Hero XP min($Hero XP+$XP Rewarded,12375)

Finally, we can add a dialogue event to show how much XP the player earned,
and with that, we have a simple XP reward script.

¥ Display "You earned $XPRewarded experience!"

Text

You earned $XP Rewarded

experiencel

Add Avatar

Nice and easy! But what now that we’ve earned that XP, what do we do with it?

Leveling Up
To check if our player has earned enough XP to level up, we’ll use a simple
formula to increase the amount of XP needed every level. This way, our player



progressively needs to earn more XP every level.

Our formula will be $Hero Level * 100 * 1.25, which gives us the following
progression for experience points:

Level XP to Level Up
125
250
375
500
625
750
875
1000
1125
1250
11+ etc

olo|lo|~|o|la|s|w]|d|=

Now, after we reward XP, let’'s check if the player has enough to level up. We’ll

calculate the XP we need to reach the next level using a [Math Expression], and
set that value to a local variable (renamed XP Needed). If our Hero XP variable
is greater than or equal to the XP needed, we’ve leveled up!

v $XPNeeded = $HeroLevel*100+(($HeroLevel*100)/4)

Variable Expression

$XP Needed v $Hero Level*100+(($Hero Level*100)/4)

Note: Since we can’t use decimal places in GB Studio, we’ll need to represent
“1.25” as our value divided by 4. This looks a little more complex, but that’s
math!

¥ If ($HeroXP >= $XPNeeded)

Condition

$ $Hero XP v > 8§ $XP Needed

¥ $HeroXP = max($HeroXP-$XPNeeded, 0)

Variable

$Hero XP

Expression

max($Hero XP-$XP Needed, 0)

» Increment $HeroLevel by 1

» Display "You reached level $SHeroLevell"

When we level up, we’ll use another [Math Expression] to reduce our Hero XP
by the XP we needed (spending it), and we can use the ‘max(‘ function to make
sure we don’t go lower than 0 when we subtract (but if you’ve done the math
correctly, this should never happen!).



After we've leveled up, we need to increase our stats! For now, we’ll simply
increase all our stats by 1 and raise our Max HP (and make sure we don’t go
higher than 999).

¥ Increase Stats

¥ $HeroMaxHP = min($HeroMaxHP+10, 999)
Variable
$Hero Max HP

Expression

min($Hero Max HP+10, 999)
¥ Increment $HeroATK by 1
Variable

$Hero ATK
¥ Increment $HeroDEF by 1

Variable

$Hero DEF

¥ Increment $HeroSpeed by 1

Variable

$HeroSpeed

In a future article, we’ll cover how to actually allocate points to specific stats and
gain more control over leveling up. Until then, experiment with your own system
for stat increases - perhaps you could randomly gain a point in one of your stats,
or maybe even gain larger increases! The choice is yours!

Next Quest:

Now that we’ve rewarded the player for beating a monster, it's time to spend that
gold! In our next quest, we'll take a break from the battle system to actually
explore the map and visit RPG staples like a shop and an inn!

You can download the project files here, and don’t forget to visit the project page
on itch.io to ask questions or provide feedback. See you next time.

Designer’s Note:

Thanks to feedback shared on our project’s itch page, there’s been a minor
adjustment to the size of the battle screen background. The background size
has been increased to 176 x 160, and a black border added to the scene. This
makes the screen shake events look smoother. I've also made an aesthetic
change to the text box borders. Neither of these changes will impact the lessons,
but will make our project look slightly nicer moving forward.

Remember, if you change your background size, you'll need to adjust any events



that refer to specific coordinates (such as our Replace Tile or Set Position
events)!



